8 research outputs found

    Eliminação de Ruído Impulsivo Usando um Filtro Mediano Seletivo e Difusão Isotrópica

    Get PDF
    Neste trabalho apresenta-se um algoritmo combinando-se uma modificação do filtro mediano padrão, com base no detector de ruído impulsivo proposto por Chen, Yang e Cao, com um processo de difusão isotrópica para remoção de ruído sal e pimenta. Para eliminar ruído impulsivo em imagens coloridas, a ideia é aplicar o algoritmo separadamente em cada canal de cor. Os experimentos realizados indicam que o método proposto apresenta-se como um filtro robusto para restauração de imagens com grandes densidades de ruído

    A Decomposition and Noise Removal Method Combining Diffusion Equation and Wave Atoms for Textured Images

    Get PDF
    We propose a new method that is aimed at denoising images having textures. The method combines a balanced nonlinear partial differential equation driven by optimal parameters, mathematical morphology operators, weighting techniques, and some recent works in harmonic analysis. Furthermore, the new scheme decomposes the observed image into three components that are well defined as structure/cartoon, texture, and noise-background. Experimental results are provided to show the improved performance of our method for the texture-preserving denoising problem

    A regularized nonlinear diffusion approach for texture image denoising

    No full text
    In this paper a new partial differential equation based method is presented with a view to denoising images having textures. The proposed model combines a nonlinear anisotropic diffusion filter with recent harmonic analysis techniques. A wave atom shrinkage allied to detection by gradient technique is used to guide the diffusion process so as to smooth and maintain essential image characteristics. Two forcing terms are used to maintain and improve edges, boundaries and oscillatory features of an image having irregular details and texture. Experimental results show the performance of our model for texture preserving denoising when compared to recent methods in literature. © 2009 IEEE

    Edge detection and noise removal by use of a partial differential equation with automatic selection of parameters

    No full text
    This work deals with noise removal by the use of an edge preserving method whose parameters are automatically estimated, for any application, by simply providing information about the standard deviation noise level we wish to eliminate. The desired noiseless image u(x), in a Partial Differential Equation based model, can be viewed as the solution of an evolutionary differential equation u t(x) = F(u xx, u x, u, x, t) which means that the true solution will be reached when t ® ¥. In practical applications we should stop the time ''t'' at some moment during this evolutionary process. This work presents a sufficient condition, related to time t and to the standard deviation s of the noise we desire to remove, which gives a constant T such that u(x, T) is a good approximation of u(x). The approach here focused on edge preservation during the noise elimination process as its main characteristic. The balance between edge points and interior points is carried out by a function g which depends on the initial noisy image u(x, t0), the standard deviation of the noise we want to eliminate and a constant k. The k parameter estimation is also presented in this work therefore making, the proposed model automatic. The model's feasibility and the choice of the optimal time scale is evident through out the various experimental results

    Combining anisotropic diffusion, transport equation and texture synthesis for inpainting textured images

    No full text
    In this work we propose a new image inpainting technique that combines texture synthesis, anisotropic diffusion, transport equation and a new sampling mechanism designed to alleviate the computational burden of the inpainting process. Given an image to be inpainted, anisotropic diffusion is initially applied to generate a cartoon image. A block-based inpainting approach is then applied so that to combine the cartoon image and a measure based on transport equation that dictates the priority on which pixels are filled. A sampling region is then defined dynamically so as to hold the propagation of the edges towards image structures while avoiding unnecessary searches during the completion process. Finally, a cartoon-based metric is computed to measure likeness between target and candidate blocks. Experimental results and comparisons against existing techniques attest the good performance and flexibility of our technique when dealing with real and synthetic images. © 2013 Elsevier B.V. All rights reserved
    corecore